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1 Introduction

Randomized experiments provide the analyst with the opportunity to achieve unbiased estimation of causal
effects. Unbiasedness is an important statistical property, entailing that the expected value of an estimator
is equal to the true parameter of interest. Randomized experiments are often justified by the fact that they
facilitate unbiased estimation of the average treatment effect (ATE). However, this unbiasedness is under-
mined when the analyst uses an inappropriate analytical tool.

Many statistical methods commonly used to estimate ATEs are biased and sometimes even inconsistent.
Contrary to much conventional wisdom [1–3], even when all units have the same probability of entering
treatment, the difference-in-means estimator is biased when clustering in treatment assignment occurs
[4, 5]. In fact, unless the number of clusters grows with N, the difference-in-means estimator is not generally
consistent for the ATE. Similarly, in experiments with heterogeneous probabilities of treatment assignment,
the inverse probability weighted (IPW) difference-in-means estimator is not generally unbiased. It is perhaps
more well-known that covariate adjustment with ordinary least squares is biased for the analysis of
randomized experiments under complete randomization [6–9]. Ordinary least squares is, in fact, even
inconsistent when fixed effects are used to control for heterogeneous probabilities of treatment assignment
[10, 11]. In addition, Rosenbaum’s [12] approach for testing and interval estimation relies on strong
functional form assumptions (e.g., additive constant effects), which may lead to misleading inferences
when such assumptions are violated [13].

In this article, we draw on classical sampling theory to develop and present an alternative approach
that is always unbiased for ATE (both asymptotically and with finite N), regardless of the clustering
structure of treatment assignment, probabilities of entering into treatment, or functional form of treatment
effects. This alternative also allows for covariate adjustment, also without risk of bias. We develop a
generalized difference estimator that will allow analysts to utilize any model for outcomes in order to
reduce sampling variability. This difference estimator, which requires either prior information or statistical
independence of some units’ treatment assignment (including, e.g., blocked randomization, paired rando-
mization, or auxiliary studies), also confers other desirable statistical properties, including location invar-
iance. We also develop estimators of the sampling variability of our estimators that are guaranteed to have a
nonnegative bias whenever the difference estimator relies on prior information. These results extend those
of Middleton and Aronow [5], which provides unbiased estimators for experiments with complete randomi-
zation of clusters, including linear covariate adjustment.
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Unbiasedness may not be the statistical property that analysts are most interested in. For example,
analysts may choose an estimator with lower root mean squared error (RMSE) over one that is unbiased.
However, in the realm of randomized experiments, where many small experiments may be performed over
time, unbiasedness is particularly important. Results from unbiased but relatively inefficient estimators may
be preferable when researchers seek to aggregate knowledge from many studies, as reported estimates may
be systematically biased in one direction. Furthermore, clarifying the conditions under which unbiasedness
will occur is an important enterprise. The class of estimators that is developed here is theoretically
important, as it provides sufficient conditions for estimator unbiasedness.

This article proceeds as follows. In section 2, we provide a literature review of related work. In section 3, we
detail the Neyman–Rubin causal model and define the causal quantity of interest. In section 4, we provide an
unbiased estimator of the ATE and contrast it with other estimators in two common situations. In section 5, we
develop the generalized difference estimator of the ATE, which incorporates covariate adjustment. In section 6,
we define the sampling variance of our estimators and derive conservative estimators thereof. In section 7, we
provide a simple illustrative numerical example. In section 8, we discuss practical implications of our findings.

2 Related literature

Our work follows in the tradition of sampling theoretic causal inference founded by Neyman [49]. In recent
years, this framework has gained prominence, first with the popularization of a model of potential outcomes
[15, 16], and then notably with Freedman’s [6, 7] work on the bias of the regression estimator for the analysis
of completely randomized experiments. The methods derived here relate to the design-based paradigm
associated with two often disjoint literatures: that of survey sampling and that of causal inference. We
discuss these two literatures in turn.

2.1 Design-based and model-assisted survey sampling

Design-based survey sampling finds its roots in Neyman [14], later formalized by Godambe [17] and con-
temporaries (see [18, 19] for lucid discussions of the distinction between design-based and model-based survey
sampling). The design-based survey sampling literature grounds results in the first principles of classical
sampling theory, without making parametric assumptions about the response variable of interest (which is
instead assumed to be fixed before randomization). All inference is predicated on the known randomization
scheme. In this context, Horvitz and Thompson [20] derive the workhorse, IPW estimator for design-based
estimation upon which our results will be based. Refinements in the design-based tradition have largely
focused on variance control; early important examples include Des Raj’s [21] difference estimator and Hajek’s
[22] ratio estimator. Many textbooks (e.g., [23, 24]) on survey sampling relate this classical treatment.

The model-assisted [25] mode of inference combines features of a model-based and design-based
approach. Here, modeling assumptions for the response variable are permitted, but estimator validity is
judged by its performance from a design-based perspective. In this tradition, estimators are considered
admissible if and only if they are consistent by design [26, 27]. Model-assisted estimators include many
variants of regression (see, e.g., Ref. 28, ch. 7) or weighting estimators [29], and, perhaps most character-
istically, estimators that combine both approaches (e.g., the generalized regression estimators described in
Ref. 25). Our proposed estimators fall into the model-assisted mode of inference: unbiasedness is ensured by
design but models may be used to improve efficiency.

2.2 Design-based causal inference

The design-based paradigm in causal inference may be traced to Neyman [49], which considers finite-
population-based sampling theoretic inference for randomized experiments. Neyman established a model of
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potential outcomes (detailed in Section 3), derived the sampling variability of the difference-in-means
estimator for completely randomized experiments (defined in Section 4.1.1) and proposed two conservative
variance estimators. Imbens and Rubin [30, ch. 6] relate a modern treatment of Neyman’s approach and
Freedman, Pisani and Purves [31, A32–A34] elegantly derive Neyman’s conservative variance estimators.

Rubin [15] repopularized a model of potential outcomes for statisticians and social scientists, though
much associated work using potential outcomes falls into the model-based paradigm (i.e., in that it
hypothesizes stochasticity beyond the experimental design). Although there exists a large body of research
on causal inference in the model-based paradigm (i.e., sampling from a superpopulation) – textbook
treatments can be found in, e.g., Morgan and Winship [32], Angrist and Pischke [33] and Hernan and
Robins [34] – we focus our discussion on research in the Neyman-style, design-based paradigm.1

Freedman [6, 7, 36] rekindled interest in the design-based analysis of randomized experiments.
Freedman raises major issues posed by regression analysis as applied to completely randomized experi-
ments, including efficiency, bias, and variance estimation. Lin [9] and Miratrix, Sekhon and Yu [37] address
these concerns by respectively proposing alternative regression-based and post-stratification-based estima-
tors that are both at least as asymptotically efficient as the unadjusted estimator (and, in fact, the post-
stratification-based estimator may be shown to be a special case of the regression-based estimator than Lin
proposes). Turning to the issue of bias, Miratrix, Sekhon and Yu are also able to demonstrate that, for many
experimental designs – including the completely randomized experiment – the post-stratification-based
estimator is conditionally unbiased. Our contribution is to propose a broad class of unbiased estimators that
are applicable to any experimental design while still permitting covariate adjustment.

Variance identification and conservative variance estimation for completely randomized and pair-
randomized experiments are considered by Robins [38] and Imai [39] respectively, each showing how
inferences may differ when a superpopulation is hypothesized. Samii and Aronow [13] and Lin [9] demon-
strate that, in the case of completely randomized experiments, heteroskedasticity-robust variance estimates
are conservative and Lin demonstrates that such estimates provide a basis for asymptotic inference under a
normal approximation. Our article extends this prior work by proposing a new Horvitz–Thompson-based
variance estimator that is conservative for any experimental design, though additional regularity conditions
would be required for use in constructing confidence intervals and hypothesis tests.

Finally, we note increased attention to the challenges of analysis of cluster-randomized experiments
under the design-based paradigm, as evidenced in Refs. [4, 5, 40, 41]. Middleton [4] notes the bias of
regression estimators for the analysis of cluster-randomized designs with complete randomization of
clusters. As in this article, Hansen and Bowers [40] propose innovative model-assisted estimators that
allow for the regression fitting of outcomes, though conditions for unbiasedness are not established nor are
the results generalized to alternative experimental designs. Imai, King and Nall [41] propose that pair
matching is “essential” for cluster-randomized experiments at the design-stage and derive associated
design-based estimators and conservative variance estimators. Middleton and Aronow [5] propose
Horvitz–Thompson-type unbiased estimators (including linear covariate adjustment), along with multiple
variance estimators, for experiments with complete randomization of clusters. Our article accommodates
cluster-randomized designs, as well as any nonstandard design that might be imposed by the researcher.

3 Neyman–Rubin causal model

We begin by detailing the Neyman–Rubin nonparametric model of potential outcomes [16, 49], which
serves as the basis of our estimation approach. Define a binary treatment indicator Ti for units i ¼ 1; 2; :::;N

1 An alternative design-based tradition, typified by Rosenbaum [35], permits hypothesis testing, confidence interval construc-
tion, and Hodges-Lehmann point estimation via Fisher’s [48] exact test. Although links may be drawn between this Fisherian
mode of inference and the Neyman paradigm [13], the present work is not directly connected to the Fisherian mode of inference.
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such that Ti ¼ 1 when unit i receives the treatment and Ti ¼ 0 otherwise.2 If the stable unit treatment value
assumption [16] holds, let Y1i be the potential outcome if unit i is exposed to the treatment, and let Y0i be the
potential outcome if unit i is not exposed to the treatment. The observed outcome Yi may be expressed as a
function of the potential outcomes and the treatment:

Yi ¼ TiY1i þ ð1� TiÞY0i: ½1�

The causal effect of the treatment on unit i, τi, is defined as the difference between the two potential
outcomes for unit i:

τi ; Y1i � Y0i: ½2�

The ATE, denoted by Δ, is defined as the average value of τi for all units i. In the Neyman–Rubin model, the
only random component is the allocation of units to treatment and control groups.

Since τi ; Y1i � Y0i, the ATE,

Δ ¼
PN
i¼1

τi

N
¼
PN
i¼1

ðY1i � Y0iÞ
N

¼ 1
N

XN
i¼1

Y1i �
XN
i¼1

Y0i

" #
¼ 1

N
YT
1 � YT

0

� �
; ½3�

where YT
1 is the sum of the potential outcomes if in the treatment condition and YT

0 is the sum of potential
outcomes if in the control condition. An estimator of Δ can be constructed using estimators of YT

0 and YT
1 :

bΔ ¼ 1
N
cYT
1 � cYT

0

h i
; ½4�

where cYT
1 is the estimated sum of potential outcomes under treatment and cYT

0 is the estimated sum of
potential outcomes under control.

Formally, the bias of an estimator is the difference between the expected value of the estimator and the
true parameter of interest; an estimator is unbiased if this difference is equal to zero. If the estimators cYT

0

and cYT
1 are unbiased, the corresponding estimator of Δ is also unbiased since

E½bΔ� ¼ 1
N

E½cYT
1 � � E½cYT

0 �
h i

¼ 1
N

YT
1 � YT

0

� � ¼ Δ: ½5�

In the following sections, we demonstrate how to derive unbiased estimators of YT
0 and YT

1 and, in so doing,
derive unbiased estimators of Δ.

4 Unbiased estimation of ATEs

Define N as the number of units in the study, π1i as the probability that unit i is selected into treatment, and
π0i as the probability that unit i is selected into control. We assume that, "i, π1i > 0 and π0i > 0, or that
there is a nonzero probability that each unit will be selected into treatment and that there is a nonzero
probability that each unit will be selected into control. (When all units are assigned to either treatment or
control, π0i þ π1i ¼ 1.) To derive an unbiased estimator of the ATE, we first posit estimators of YT

0 and YT
1 .

Define the Horvitz–Thompson estimator [20] of YT
1 ,

2 This assumption is made without loss of generality; multiple discrete treatments (or equivalently, some units not being
sampled into either treatment or control) are easily accommodated in this framework. All instances of ð1� TiÞ in the text may be
replaced by Ci, an indicator variable for whether or not unit i receives the control, with one exception to be noted in Section 6.
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dYT
1;HT ¼

XN
i¼1

1
π1i

TiY1i ¼
XN
i¼1

1
π1i

TiYi: ½6�

and, similarly, define the Horvitz–Thompson estimator of YT
0 ,

dYT
0;HT ¼

XN
i¼1

1
π0i

1� Tið ÞY0i ¼
XN
i¼1

1
π0i

1� Tið ÞYi: ½7�

The estimators in eqs. [6] and [7] are unbiased for YT
1 and YT

0 , respectively, since E½Ti� ¼ π1i and
E½1� Ti� ¼ 1� π1i ¼ π0i.

From eq. [4], it follows that we may construct an unbiased estimator of Δ:

dΔHT ¼ 1
N

dYT
1;HT � dYT

0;HT

h i
¼ 1

N

XN
i¼1

1
π1i

YiTi �
XN
i¼1

1
π0i

Yið1� TiÞ
" #

: ½8�

We refer to this estimator of the ATE as the HT estimator. The HT estimator is subject to two major
limitations. First, as proved in Appendix A, the estimator is not location invariant. By location invariance,
we mean that, for a linear transformation of the data,

Y�
i ; b0 þ b1 � Yi; ½9�

where b0 and b1 are constants, the estimator based on the original data, bΔ, relates to the estimator computed
based on the transformed data, bΔ�, in the following way:

b1bΔ ¼ bΔ�: ½10�

Failure of location invariance is an undesirable property because it implies that rescaling the data (e.g.,
recoding a binary outcome variable) can substantively alter the estimate that we compute based on the data.
Second,dΔHT does not account for covariate information, and so may be imprecise relative to estimators that
incorporate additional information. We address both of these issues in Section 5.

4.1 Special cases

The HT estimator is unbiased for all designs, but we will now demonstrate what the estimator reduces to
under two common designs. In the first, a fixed number of units n out of Nð Þ is selected for inclusion in the
treatment, each with equal probability n=N. In the second, we consider a case where units are selected as
clusters into treatment.

4.1.1 Complete random assignment of units into treatment

Consider a design where a fixed number of units n out of Nð Þ is selected for inclusion in the treatment, each
with equal probability n=N. The associated estimator is

dΔDM ¼ 1
N

XN
i¼1

Ti
N
n
Yi �

XN
i¼1

1� Tið Þ N
N � n

Yi

" #
¼

P
i2I1

Yi

n
�

P
i2I0

Yi

N � n
: ½11�

P.M. Aronow and J.A. Middleton: Unbiased Estimators of the Average Treatment Effect 139

Unauthenticated | 74.72.122.93
Download Date | 6/7/13 7:56 PM



Eq. [11] shows that for the special case where n of N units are selected into treatment, the HT estimator
reduces to the difference-in-means estimator: the average outcome among treatment units minus
the average outcome among control units. While the difference-in-means estimator is not generally
unbiased for all equal-probability designs, it is unbiased for the numerous experiments that use this
particular design.

4.1.2 Complete random assignment of clusters into treatment

Consider a design where a fixed number of clusters m out of M clustersð Þ is selected for inclusion in the
treatment, each with equal probability m=M. The associated estimator is

cΔC ¼ 1
N

XN
i¼1

Ti
M
m

Yi �
XN
i¼1

1� Tið Þ M
M �m

Yi

" #
¼ M

N

P
i2I1

Yi

m
�

P
i2I0

Yi

M �m

264
375: ½12�

Contrast the estimator in eq. [12] with the estimator in eq. [11]. A key insight is that eq. [12] does not reduce to
the difference-in-means estimator in eq. [11]. In fact, the difference-in-means estimator may be biased
for cluster randomized experiments [5]. Moreover, since the difference-in-means estimator is
algebraically equivalent to simple linear regression, regression will likewise be biased for cluster rando-
mized designs [4].

5 Unbiased covariate adjustment

Regression for covariate adjustment is generally biased under the Neyman–Rubin causal model [6, 7].
In contrast, a generalized estimator can be constructed to obtain unbiased covariate adjustment. We draw
upon the concept of difference estimation, which sampling theorists have been using since (at least) Des Raj
[21]. The primary insight into constructing the estimators in eq. [8] is that we need only construct unbiased
estimators of totals under treatment and control conditions in order to construct an unbiased estimator of the
ATE. Unlike Rosenbaum [12], we make no assumptions about the structure (e.g., additivity) of treatment effects.

Continuing with the above-defined notion of estimating totals, we can consider the following class of
estimators,

dYT�
1 ¼

XN
i¼1

Ti
Y1i

π1i
� Ti

f Xi; θið Þ
π1i

þ f Xi; θið Þ
� �

; ½13�

and

dYT�
0 ¼

XN
i¼1

1� Tið ÞY0i

π0i
� 1� Tið Þ f Xi; θið Þ

π0i
þ f Xi; θið Þ

� �
; ½14�

where f ð:Þ is a predetermined real-valued function of pretreatment covariate vector Xi and of parameter
vector θi.

3 In inspecting eq. [13], one intuition is that if f Xi; θið Þ predicts the value of Y1i, then across units in

3 An alternative is to also allow f ð:Þ to vary between the treatment and control groups, particularly if effect sizes are anticipated
to be large. Many of our results will also hold under such a specification, although the conditions for unbiasedness (and
conservative variance estimation) will be somewhat more restrictive.
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the study population f Xi; θið Þ and Y1i will be correlated. By implication then,
PN
i¼1

Ti
Y1i
π1i

and
PN
i¼1

Ti
f Xi;θið Þ

π1i
will be

correlated across randomizations, thus yielding dYT�
1 such that Var dYT�

1

� �
< Var cYT

1

� �
. The same intuition

holds for eq. [14], so that both estimators will typically have precision gains.
There are many options for choosing f ð:Þ. One option for f ð:Þ is a linear relationship between Yi

and Xi: f Xi; θið Þ ¼ θi
0Xi: Similarly, if the relationship were thought to follow a logistic function (for

binary Yi), f Xi; θið Þ ¼ 1� 1=ð1þ exp θi
0Xið ÞÞ: While the choice of f ð:Þ may be relevant for efficiency, it has

no bearing on the unbiasedness of the estimator, so long as the choice is determined prior to examining the
data.

We may now define the generalized difference estimator:

cΔG ¼ 1
N
dYT�
1 �dYT�

0

� �
: ½15�

The generalized difference estimator both confers location invariance (as demonstrated in Appendix C) and,
very often, decreased sampling variability. cΔG is equivalent to the Horvitz–Thompson estimator minus an
adjustment term:

cΔG ¼ dΔHT � 1
N

XN
i¼1

Ti
f Xi; θið Þ

π1i
�
XN
i¼1

1� Tið Þ f Xi; θið Þ
π0i

 !
: ½16�

The adjustment accounts for the fact that some samples will show imbalance on f Xi; θið Þ. As we prove in
Appendix B, a sufficient condition for cΔG to be unbiased is that, for all i, Cov Ti; f Xi; θið Þð Þ ¼ 0. The simplest
way for this assumption to hold is for θi to be derived from an auxillary or prior source, but we examine this
selection process further in Section 5.1.4

5.1 Deriving θi while preserving unbiasedness

If θi is derived from the data, unbiasedness is not guaranteed because the value of f Xi; θið Þ can depend on
the particular randomization, and thus Cov Ti; f Xi; θið Þð Þ is not generally equal to zero. Formally, the
estimator will generally be biased because

E dYT�
1

h i
¼ E

XN
i¼1

Ti
Y1i

π1i
�
XN
i¼1

Ti
f Xi; θið Þ

π1i
þ
XN
i¼1

f Xi; θið Þ
"

¼ YT
1 �

XN
i¼1

Cov Ti;
f Xi; θið Þ

π1i

� 	
; ½17�

and, likewise,

4 Interestingly (and perhaps unsurprisingly), cΔG is quite similar to the double robust (DR) estimator proposed by Robins [42]
(and similar estimators, e.g., Ref. 43) the key differences between the DR estimator and the difference estimator follow. (a) The
DR estimator utilizes estimated, rather than known, probabilities of entering treatment, and thus is subject to bias with finite N.
(b) Even if known probabilities of entering treatment were used, θ in f Xi; θið Þ is chosen using a regression model, which typically
fails to satisfy the restrictions necessary to yield unbiasedness established in Section 5.1. Thus, the DR estimator is subject to bias
with finite N.
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E dYT�
0

h i
¼ YT

0 �
XN
i¼1

Cov 1� Tið Þ; f Xi; θið Þ
π0i

� 	
: ½18�

In general, the bias of the estimator based on eqs. [13] and [14] will therefore be

E cΔG

h i
� Δ ¼ 1

N

XN
i¼1

Cov 1� Tið Þ; f Xi; θið Þ
π0i

� 	
�
XN
i¼1

Cov Ti;
f Xi; θið Þ

π1i

� 	 !
: ½19�

Consider two ways that one might derive θi that satisfy Cov Ti; f Xi; θið Þð Þ ¼ 0. The simplest is to assign
a fixed value to θi, so that f Xi; θið Þ has no variance, and thus no covariance with Ti. Assigning a fixed
value to θi requires using a prior insight or an auxiliary dataset. The choice of θi may be suboptimal and, if
chosen poorly, may increase the variance of the estimate, but, so long as the analyst does not use the data
at hand in forming a judgment, there will be no consequence for bias. In fact, as we demonstrate in
Section 6, this approach – where θi is constant across randomizations – will provide benefits for variance
estimation.

Following the basic logic of Williams [44], a second option, only possible in some studies, is to exploit
the fact that for some units i; j, Ti ╨ Tj. Recall from (1) that Yi ¼ TiY1i þ ð1� TiÞY0i, where Y1i and Y0i are
constants. Since the only stochastic component of Yi is Ti, then Ti ╨ Tj, and Ti ╨ Yj. If θi is a function of any
or all of the elements of the set fYj : Ti ╨ Tjg and no other random variables, then Ti ╨ θi. It follows that
Ti ╨ f ðXi; θiÞ and therefore Cov Ti; f Xi; θið Þð Þ ¼ 0.5 There are many studies where this option is available.
Consider first an experiment where units are independently assigned to treatment. Without loss of general-
ity, let us assume that the analyst chooses f ð:Þ to be linear. The analyst can then derive a parameter vector θi
for each unit i in the following way: for each i, the analyst could perform an ordinary least squares
regression of the outcome on covariates for all units except for unit i. Another example where the second
option could be used is a block-randomized experiment. In a block-randomized experiment, units are
partitioned into multiple groups, with randomization only occurring within partitions. Since the treatment
assignment processes in different partitions are independent, Ti ╨ Tj for all i; j such that i and j are in
separate blocks. To derive θi for each i, the analyst could then use a regression of outcomes on covariates
including all units not in unit i’s block. Unmeasured block specific effects may cause efficiency loss, but
would not lead to bias.

Note that there exists a special case where θi may be derived from all Yi without any consequence for
bias. If there is no treatment effect whatsoever, then, for all units i, Yi will be constant, and thus f Xi; θið Þ will
have no variance (and thus no covariance with any random variables). This point will have greater
importance in the following section, where we derive expressions for and develop estimators for the
sampling variance of the proposed ATE estimators.

6 Sampling variance

In the section, we will provide expressions for the sampling variance of the HT estimator and the
generalized difference estimator. We will then derive conservative estimators of these sampling variances.

5 More formally and without loss of generality, let f Xi; θið Þ ¼ f Xi; g Z;Yj

 �
 � ¼ f Xi; g Z; hðY0j;Y1j;TjÞ


 �
 �
, where Z is a matrix of

pretreatment covariates (that may or may not coincide with Xj), gð:Þ is an arbitrary function (e.g., the least squares fit), and hð:Þ
is the function implied by eq. [1]. Since only Tj is a random variable, the random variable f Xi; θið Þ equals some function f 0ðTjÞ.
Ti ╨ Tj implies Ti ╨ f 0ðTjÞ (equivalently Ti ╨ f Xi; θið Þ) which, in turn, implies Cov Ti; f Xi; θið Þð Þ ¼ 0.
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6.1 Sampling variance of the HT estimator

We begin by deriving the sampling variance of the HT estimator:

Var bΔHT

h i
¼ Var

cYT
1 � cYT

0

N

" #
¼ 1

N2
Var cYT

1

h i
þ Var cYT

0

h i
� 2Cov cYT

1 ;
cYT
0

h i� �
½20�

By Horvitz and Thompson [20], the variance of cYT
1 ,

Var ðcYT
1 Þ ¼

XN
i¼1

XN
j¼1

CovðTi;TjÞY1i

π1i

Y1j

π1j

¼
XN
i¼1

Var ðTiÞ Y1i

π1i

� 	2

þ
XN
i¼1

X
j�i

CovðTi;TjÞY1i

π1i

Y1j

π1j

¼
XN
i¼1

π1ið1� π1iÞ Y1i

π1i

� 	2

þ
XN
i¼1

X
j�i

ðπ1i1j � π1iπ1jÞY1i

π1i

Y1j

π1j
;

½21�

where π1i1j is the probability that units i and j are jointly included in the treatment group. Similarly,

VarðcYT
0 Þ ¼

XN
i¼1

π0ið1� π0iÞ Y0i

π0i

� 	2

þ
XN
i¼1

X
j�i

ðπ0i0j � π0iπ0jÞY0i

π0i

Y0j

π0j
; ½22�

where π0i0j is the probability that units i and j are jointly included in the control group. An expression for

Cov cYT
1 ;
cYT
0

h i
may be found in Ref. [45],

Cov cYT
1 ;
cYT
0

� �
¼
XN
i¼1

XN
j¼1

ðπ1i0j � π1iπ0jÞY1iY0j

π1iπ0j

¼
XN
i¼1

X
"j:π1i0j�0

ðπ1i0j � π1iπ0jÞY1iY0j

π1iπ0j
�
XN
i¼1

X
"j:π1i0j¼0

Y1iY0j;

½23�

where π1i0j is the joint probability that unit i will be in the treatment group and unit j will be in the control
group. Substituting eqs. [21], [22], and [23] into eq. [20],

Var bΔHT

h i
¼ 1
N2

XN
i¼1

π1ið1� π1iÞ Y1i

π1i

� 	2

þ
XN
i¼1

X
j�i

ðπ1i1j � π1iπ1jÞY1i

π1i

Y1j

π1j

 

þ
XN
i¼1

π0ið1� π0iÞ Y0i

π0i

� 	2

þ
XN
i¼1

X
j�i

ðπ0i0j � π0iπ0jÞY0i

π0i

Y0j

π0j
:

�2
XN
i¼1

X
"j:π1i0j�0

ðπ1i0j � π1iπ0jÞY1iY0j

π1iπ0j
þ 2

XN
i¼1

X
"j:π1i0j¼0

Y1iY0jÞ:

½24�

6.2 Sampling variance of the generalized difference estimator

If f Xi; θið Þ are constants, this variance formula is also applicable to the generalized difference estimator.
When f Xi; θið Þ is constant, we may simply redefine the outcome variable, Ui ¼ Yi � f Xi; θið Þ. It follows that
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U0i ¼ Y0i � f Xi; θið Þ and U1i ¼ Y1i � f Xi; θið Þ. If we rewrite eq. [16], we can see that the generalized difference
estimator is equivalent to the HT estimator applied to Ui:

cΔG ¼ 1
N

XN
i¼1

Ti
Y1i

π1i
�
XN
i¼1

Ti
f Xi; θið Þ

π1i
�
XN
i¼1

1� Tið ÞY0i

π0i
þ
XN
i¼1

1� Tið Þ f Xi; θið Þ
π0i

 !

¼ 1
N

XN
i¼1

Ti
Y1i � f Xi; θið Þ

π1i
�
XN
i¼1

1� Tið ÞY0i � f Xi; θið Þ
π0i

 !

¼ 1
N

XN
i¼1

1
π1i

TiUi �
XN
i¼1

1
π0i

ð1� TiÞUi

 !
:

½25�

Therefore, when f Xi; θið Þ is constant,

Var bΔG

h i
¼ 1
N2

XN
i¼1

π1ið1� π1iÞ U1i

π1i

� 	2

þ
XN
i¼1

X
j�i

ðπ1i1j � π1iπ1jÞU1i

π1i

U1j

π1j

 

þ
XN
i¼1

π0ið1� π0iÞ U0i

π0i

� 	2

þ
XN
i¼1

X
j�i

ðπ0i0j � π0iπ0jÞU0i

π0i

U0j

π0j

�2
XN
i¼1

X
"j:π1i0j�0

U1iU0j

π1iπ0j
ðπ1i0j � π1iπ0jÞ þ 2

XN
i¼1

X
"j:π1i0j¼0

U1iU0j

1A:

½26�

Conversely, the HT estimator may be considered a special case of the generalized difference estimator where
f Xi; θið Þ is zero for all units. As we proceed, for notational clarity, we use Yi as the outcome measure, noting
that the variances derived will also apply to the generalized difference estimator if Ui is substituted for Yi

(along with both associated potential outcomes) and f Xi; θið Þ is constant.

6.3 Accounting for clustering in treatment assignment

We will rewrite the cYT
1 and cYT

0 estimators to account for clustering in treatment assignment. (Our reasons for
doing so, while perhaps not obvious now, will become clearer when we derive variance estimators in
Section 6.4 and Appendices D and E. While the treatment effect estimators are identical, such a notational
switch will allow us to simplify and reduce the bias of our eventual variance estimators.) Note that if, for
some units i; j, PrðTi�TjÞ ¼ 0, then the total estimators may be equivalently rewritten. Define Kk 2 K as the
set of unit indices i that satisfy Ti ¼ T 0

k, where T 0
k is indexed over all jKj unique random variables in

fTi : i ¼ ð1; 2; :::;NÞg. Define π01k as the value of π1i;"i 2 Kk, π00k as the value of π0i;"i 2 Kk. Joint probabil-

ities π01k1l, π
0
1k0l, and π00k0l are defined analogously. Given these definitions, we can rewrite the HT estimator

of the total of treatment potential outcomes as

dYT
1;HT ¼

XN
i¼1

1
πi
TiYi ¼

XM
k¼1

X
i2Kk

1
π1i

TiYi ¼
XM
k¼1

X
i2Kk

1
π01k

T 0
kYi ¼

XM
k¼1

1
π01k

T 0
k

X
i2Kk

Yi

¼
XM
k¼1

1
π01k

T 0
kY

0
k;

where Y 0
k ¼

P
i2Kk

Yi. And, similarly,
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dYT
0;HT ¼

XM
k¼1

1
π00k

ð1� T 0
kÞY 0

k:

In simple language, these estimators now operate over cluster totals as the units of observation. Since the
units will always be observed together, they can be summed prior to estimation. The equivalency of these
totaled and untotaled HT estimators serves as the basis for the estimation approach in Middleton and
Aronow [5]. We may now derive variance expressions logically equivalent to those in eqs. [21], [22], and [23]:

VarðcYT
1 Þ ¼

XM
k¼1

π01kð1� π01kÞ
Y 0
1k

π01k

� 	2

þ
XM
k¼1

X
l�k

ðπ01k1l � π01kπ
0
1lÞ

Y 0
1k

π01k

Y 0
1l

π01l
; ½27�

VarðcYT
0 Þ ¼

XM
k¼1

π00kð1� π00kÞ
Y 0
0k

π00k

� 	2

þ
XM
k¼1

X
l�k

ðπ00k0l � π00kπ
0
0lÞ

Y 0
0k

π00k

Y 0
0l

π00l
½28�

and

Cov cYT
1 ;
cYT
0

� �
¼
XM
k¼1

XM
l¼1

ðπ01k0l � π01kπ
0
0lÞ

Y 0
1kY

0
0l

π01kπ
0
0l

¼
XM
k¼1

X
"l:π01k0l�0

ðπ01k0l � π01kπ
0
0lÞ

Y 0
1kY

0
0l

π01kπ
0
0l

�
XM
k¼1

X
"l:π01k0l¼0

Y 0
1kY

0
0l;

½29�

where Y 0
1k ¼

P
i2Kk

Y1i and Y 0
0k ¼

P
i2Kk

Y0i. The covariance expression in eq. [29] may now be simplified, however.

Since, for all pairs k; l such that k � l, PrðT 0
k � T 0

l Þ > 0, then π01k0l > 0 for all l � k.6 Therefore, the

covariance expression may be reduced further.

Cov cYT
1 ;
cYT
0

� �
¼
XM
k¼1

X
l�k

ðπ01k0l � π01kπ
0
0lÞ

Y 0
1kY

0
0l

π01kπ
0
0l

�
XM
k¼1

Y 0
1kY

0
0k; ½30�

where the last term is the product of the potential outcomes for each cluster total.

6.4 Conservative variance estimation

Our goal is now to derive conservative variance estimators: although not unbiased, these estimators are

guaranteed to have a nonnegative bias.7 We can identify estimators of Var cYT
1

h i
, Var cYT

0

h i
and Cov cYT

1 ;
cYT
0

h i
that are (weakly) positively, positively and negatively biased respectively.8 Recalling eq. [20], the signs of
these biases will ensure a nonnegative bias for the overall variance estimator.

6 If there are multiple treatments, the following simplification cannot be used. Furthermore, the associated estimator in
Section 6.4 must apply to eq. [29], for which the derivation is trivially different.
7 Although the variance estimator is nonnegatively biased, the associated standard errors may not be (due to Jensen’s
inequality) and any particular draw may be above or below the true value of the variance due to sampling variability.
8 The variance estimators derived in this paper do not reduce to those proposed by Neyman [49], Imai [40] or Middleton and
Aronow [5], due to differences in how the covariance term is approximated.
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First, let us derive an unbiased estimator of VarðcYT
1 Þ under the assumption that, for all pairs k; l, π01k1l

and π00k0l > 0: This assumption is equivalent to assuming that all pairs of units have nonzero probability of

being assigned to the same treatment condition. This assumption is violated in, e.g., pair-randomized
studies, wherein the joint probability of two units in the same pair being jointly assigned to treatment is
zero. We propose the Horvitz and Thompson [20] style estimator,

dVarðcYT
1 Þ ¼

XM
k¼1

T 0
kð1� π01kÞ

Y 0
k

π01k

� 	2

þ
XM
k¼1

X
l�k

T 0
kT

0
l

π01k1l
ðπ01k1l � π01kπ

0
1lÞ

Y 0
k

π01k

Y 0
l

π01l
; ½31�

which is unbiased by E T 0
k

� � ¼ π01k and E T 0
kT

0
l

� � ¼ π01k1l.
What if, for some k; l, π01k1l ¼ 0? Aronow and Samii [46] prove thatdVarðcYT

1 Þ will be conservative, or non-
negatively biased, if, for all k, Y 0

1k � 0 (or, alternatively, all Y 0
1k � 0). Aronow and Samii [46] provide an

alternative conservative estimator of the variance for the general case, where Y 0
1k may be positive or

negative:

dVarCðcYT
1 Þ ¼

XM
k¼1

T 0
kð1� π01kÞ

Y 0
k

π01k

� 	2

þ
XM
k¼1

X
l�k:π01k1l>0

T 0
kT

0
l

π01k1l
ðπ01k1l � π01kπ

0
1lÞ

Y 0
k

π01k

Y 0
l

π01l

þ
XM
k¼1

X
"l:π01k1l¼0

T 0
k
ðY 0

kÞ2
2π01k

þ T 0
l
ðY 0

l Þ2
2π01l

 !
:

½32�

By an application of Young’s inequality, E dVarCðcYT
1 Þ

h i
� VarðcYT

1 Þ. (An abbreviated proof is presented in

Appendix D.) Likewise, a generally conservative estimator of VarðcYT
0 Þ,

dVarCðcYT
0 Þ ¼

XM
k¼1

ð1� T 0
kÞð1� π00kÞ

Y 0
k

π00k

� 	2

þ
XM
k¼1

X
l�k:π00k0l>0

ð1� T 0
kÞð1� T 0

l Þ
π00k0l

ðπ00k0l � π00kπ
0
0lÞ

Y 0
k

π00k

Y 0
l

π00l

þ
XM
k¼1

X
"l:π00k0l¼0

ð1� T 0
kÞ ðY

0
kÞ2

2π00k
þ ð1� T 0

l Þ
ðY 0

l Þ2
2π00l

 !
:

½33�

Unfortunately, it is impossible to develop a generally unbiased estimator of the covariance between cYT
1 andcYT

0 because Y 0
1k and Y 0

0k can never be jointly observed. However, again using Young’s inequality, we can

derive a generally conservative (which is, in this case, nonpositively biased) covariance estimator:

dCovC cYT
1 ;
cYT
0

� �
¼
XM
k¼1

X
l�k

T 0
kð1� T 0

l Þ
π01k0l

ðπ01k0l � π01kπ
0
0lÞ

Y 0
kY

0
l

π01kπ
0
0l

�
XM
k¼1

T 0
k
ðY 0

kÞ2
2π01k

�
XM
k¼1

ð1� T 0
kÞ
ðY 0

kÞ2
2π00k

:

½34�

In Appendix E, we prove that E dCovC cYT
1 ;
cYT
0

� �h i
� Cov cYT

1 ;
cYT
0

� �
. One important property of this estimator is

that, under the sharp null hypothesis of no treatment effect whatsoever, this estimator is unbiased.
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Combining and simplifying eqs. [32], [33], and [34], we can construct a conservative estimator of

VarðbΔHTÞ;dVarCðbΔHTÞ ¼

1
N2

XM
k¼1

T 0
k

Y 0
k

π01k

� 	2

þ ð1� T 0
kÞ

Y 0
k

π00k

� 	2

þ
X
l�k

T 0
kT

0
l

π01k1l þ "1k1l
ðπ01k1l � π01kπ

0
1lÞ

Y 0
k

π01k

Y 0
l

π01l

�"

þ ð1� T 0
kÞð1� T 0

l Þ
π00k0l þ "0k0l

ðπ00k0l � π00kπ
0
0lÞ

Y 0
k

π00k

Y 0
l

π00l
� 2

T 0
kð1� T 0

l Þ
π01k0l þ "1k0l

ðπ01k0l � π01kπ
0
0lÞ

Y 0
kY

0
l

π01kπ
0
0l

	

þ
X

"l:π01k1l¼0

T 0
k
ðY 0

kÞ2
2π01k

þ T 0
l
ðY 0

l Þ2
2π01l

 !
þ

X
"l:π00k0l¼0

ð1� T 0
kÞ
ðY 0

kÞ2
2π00k

þ ð1� T 0
l Þ
ðY 0

l Þ2
2π00l

 !35;
½35�

where "akbl ¼ 1½π0akbl ¼ 0�. ("akbl is included to avoid division by zero.) The fact thatdVarCðbΔHTÞ is conservative
has been established. But also note that when, for all k; l, π01k1l > 0 and π00k0l > 0, and there is no treatment

effect whatsoever, the estimator is exactly unbiased. A proof of this statement trivially follows from the fact
that when Y1i ¼ Y0i, eq. [1] reduces to Yi ¼ Y1i ¼ Y0i, which is not a random variable.9

7 Illustrative numerical example

In this section, we present an illustrative numerical example to demonstrate the properties of our estima-
tors. This example is designed to be representative of small experiments in the social sciences that may be
subject to both clustering and blocking. Consider a hypothetical randomized experiment run on 16 indivi-
duals organized into 10 clusters across two blocks. A single prognostic covariate X is available, and two
clusters in each block are randomized into treatment, with the others randomized into control. In Table 1,

9 dVarCðbΔGÞ, the variance estimator as applied to Ui, is not generally guaranteed to be conservative. Specifically, when f Xi; θið Þ
not constant, there is no guarantee that dVarCðbΔGÞ will be conservative, though an analogy to linearized estimators suggests that
it should be approximately conservative with large N. Importantly, however, when, for all k; l, π01k1l > 0 and π00k0l > 0 and the
sharp null hypothesis of no treatment effect holds, dVarCðbΔGÞ is unbiased for VarðbΔGÞ.

Table 1: Details of numerical example.

Unit Block Cluster Y1i Y0i X i π1i

1 1 1 1 1 4 2/4
2 1 1 1 1 0 2/4
3 1 2 1 1 4 2/4
4 1 2 1 1 1 2/4
5 1 3 1 1 4 2/4
6 1 4 0 0 2 2/4
7 2 5 1 1 4 2/6
8 2 5 1 1 1 2/6
9 2 5 0 0 2 2/6
10 2 6 1 1 5 2/6
11 2 6 1 1 4 2/6
12 2 7 1 1 1 2/6
13 2 7 1 1 4 2/6
14 2 8 0 0 2 2/6
15 2 9 0 0 2 2/6
16 2 10 0 0 3 2/6
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we detail the structure of the randomized experiment, including the potential outcomes for each unit. Note
that we have assumed no treatment effect whatsoever.

We may now assess the performance of both (average) treatment effect estimators and associated
variance estimators, by computing the estimated ATE and variance over all 90 possible randomizations.

7.1 Estimators

Let us first consider four traditional, regression based, estimators. The simplest regression based estimator is
the simple IPW difference-in-means estimator, logically equivalent to an IPW least squares regression of the
outcome on the treatment indicator. The IPW difference-in-means estimator is a consistent estimator if the
finite population grows in such a fashion that the WLLN holds, e.g., independent assignment of units or a
growing number of clusters (see [5], for a discussion of the consistency of the difference-in-means estimator in
the equal-probability, clustered random assignment case). To estimate the variance of this estimator, we use
the Huber-White “robust” clustered variance estimator from a IPW least squares regression.

We then examine an alternative regression strategy: ordinary least squares, holding fixed effects for
randomization strata (the “FE” estimator). Under modest regularity conditions, Angrist [10] demonstrates
that the fixed effects estimator converges to a reweighted causal effect; in this case, the estimator would be
consistent as the treatment effect is constant (zero) across all observations. Similarly, we also use the fixed
effects estimator including the covariate X (the “FE (Cov.)” estimator) in the regression. For both estimators,
the associated variance estimator is the Huber-White “robust” clustered variance estimator. Last among the
regression estimators is the random effects estimator (the “RE (Cov.)” estimator), as implemented using the
lmer() function in the lme4 [47] package in R. As with the general recommendation of Green and Vavreck [2]
for cluster randomized experiments, we assume a Gaussian random effect associated with each cluster,
fixed effects for randomization strata and control for the covariate X. Variance estimates are empirical Bayes
estimates also produced by the lmer() function.

We now examine four cases of the Horvitz–Thompson-based estimators proposed in this article.
Referring back to eqs. [8] and [35], we first use dΔHT and dVarCðbΔHTÞ to estimate the ATE and variance. We
then use three different forms of the generalized difference estimator. In all cases, we use the general
formulations in cΔG and dVarCðbΔGÞ, but vary the form and parameters of f Xi; θið Þ. In the “G (Prior)”
specification, we set f Xi; θið Þ ¼ 0:5 (a reasonable agnostic choice for a binary outcome), neither varying
the fitting function according to observed data nor incorporating information on the covariate. In the “G
(Linear)” specification, f Xi; θið Þ ¼ β0b þ β1bXi, where b indicates the block of the unit. For units in block 1,
we estimate β01 and β11 from an OLS regression of Yi on the covariate (including an intercept) using only
units in block 2. β02 and β12 are similarly estimated from an OLS regression using only units in block 1. As
detailed in Section 5, this procedure preserves unbiasedness since, for all units, Cov Ti; f Xi; θið Þð Þ ¼ 0. In the
“G (Logit)” specification, f Xi; θið Þ ¼ 1� 1=ð1þ exp β0b þ β1bXið ÞÞ. β01 and β11 are now derived from a logistic
regression using only the units in block 2 (and vice versa for β02 and β12). The G (Logit) specification is also
unbiased by Cov Ti; f Xi; θið Þð Þ ¼ 0. However, while the variance estimators for the HT-based estimators are
not generally unbiased (only conservative), the variance estimators will be unbiased since the sharp null
hypothesis of no treatment effect holds and for all clusters k; l, π01k1l > 0 and π00k0l > 0.

7.2 Results

In Table 2, we demonstrate that the only unbiased estimators are the Horvitz–Thompson-based estimators:
all of the regression-based estimators, including variance estimators, are negatively biased. Although the
relative efficiency (e.g., RMSE) of each estimator depends on the particular characteristics of the data at
hand, the example demonstrates a case wherein the Horvitz–Thompson-based estimators that exploit
covariate information have lower RMSE than do the regression-based estimators.
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Furthermore, the proposed variance estimators have RMSE on par with the regression-based estimators.
However, since the regression-based estimators are negatively biased, researchers may run the risk of
systematically underestimating the variance of the estimated ATE when using standard regression estima-
tors. In randomized experiments, where conservative variance estimators are typically preferred, the
negative bias of traditional estimators may be particularly problematic.

8 Discussion

The estimators proposed here illustrate a principled and parsimonious approach for unbiased estimation of
ATEs in randomized experiments of any design. Our method allows for covariate adjustment, wherein
covariates can be allowed to have any relationship to the outcome imaginable. Conservative variance
estimation also flows directly from the design of the study in our framework. Randomized experiments
have been justified on the grounds that they create conditions for unbiased causal inference but the design
of the experiment cannot generally be ignored when choosing an estimator. Bias may be introduced by the
method of estimation, and even consistency may not be guaranteed.

In this article, we return to the sampling theoretic foundations of the Neyman [49] model to derive
unbiased, covariate adjusted estimators. Sampling theorists developed a sophisticated understanding about
the relationship between unbiased estimation and design decades ago. As we demonstrate in this article,
applying sampling theoretic insights into the analysis of randomized experiments permits a broad class of
intuitive and clear estimators that highlight the design of the experiment.

Appendix A: non-invariance of the Horvitz–Thompson estimator

This proof follows from Ref. 5. To show that the estimator in eq. [8] is not invariant, let Y�
1i be a linear

transformation of the treatment outcome for the ith person such that

Y�
1i ; b0 þ b1 � Y1i ½36�

and likewise, the control outcomes,

Y�
0i ; b0 þ b1 � Y0i: ½37�

Table 2: ATE and variance estimator properties for numerical example.

Regression based Horvitz–Thompson based

IPW FE FE (Cov.) RE (Cov.) HT G (Prior) G (Linear) G (Logit)

Δ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

E ½bΔ� ‒0.014 ‒0.016 ‒0.012 ‒0.010 0.000 0.000 0.000 0.000
Bias ‒0.014 ‒0.016 ‒0.012 ‒0.010 0.000 0.000 0.000 0.000
SE 0.276 0.283 0.191 0.197 0.429 0.302 0.162 0.170
RMSE 0.277 0.283 0.191 0.197 0.429 0.302 0.162 0.170

Var 0.076 0.080 0.036 0.039 0.184 0.091 0.026 0.029

E ½dVar � 0.071 0.074 0.031 0.038 0.184 0.091 0.026 0.029
Bias ‒0.005 ‒0.006 ‒0.005 ‒0.001 0.000 0.000 0.000 0.000
SE 0.017 0.019 0.011 0.006 0.037 0.020 0.007 0.007
RMSE 0.018 0.020 0.012 0.007 0.037 0.020 0.007 0.007
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We can demonstrate that the HT estimator is not location invariant because the estimate based on this
transformed variable will be

bΔ�
HT ¼

1
N

XN
i¼1

1
π1i

Y�
i Ti �

XN
i¼1

1
π0i

Y�
i ð1� TiÞ

" #

¼ 1
N

XN
i¼1

1
π1i

b0 þ b1Yið ÞTi �
XN
i¼1

1
π0i

b0 þ b1Yið Þð1� TiÞ
" #

¼ 1
N

XN
i¼1

1
π1i

b0Ti �
XN
i¼1

1
π0i

b0ð1� TiÞ
" #

þ 1
N

XN
i¼1

1
π1i

b1YiTi �
XN
i¼1

1
π0i

b1Yið1� TiÞ
" #

¼ b0
N

XN
i¼1

1
π1i

Ti �
XN
i¼1

1
π0i

ð1� TiÞ
" #

þ b1
N

XN
i¼1

1
π1i

YiTi �
XN
i¼1

1
π0i

Yið1� TiÞ
" #

¼ b0
N

XN
i¼1

1
π1i

Ti �
XN
i¼1

1
π0i

ð1� TiÞ
" #

þ b1bΔHT:

½38�

Unless b0 ¼ 0, the term on the left does not generally reduce to zero but instead varies across treatment
assignments, so eq. [38] does not generally equal eq. [10] for a given randomization. Therefore, the HT
estimator is not generally location invariant. The equation also reveals that multiplicative scale changes
where b0 ¼ 0 and b1 6¼ 0 (e.g., transforming from feet to inches) need not be of concern. However, a
transformation that includes an additive component, such as reverse coding a binary indicator variable
(b0 ¼ 1 and b1 ¼ �1), will lead to a violation of invariance. So, for any given randomization, transforming
the data in this way can yield substantively different estimates.

Appendix B: unbiasedness of the generalized difference estimator

Assume that Cov Ti; f Xi; θið Þð Þ ¼ 0, for all i 2 ð1; 2; :::;NÞ.

E dYT�
1

h i
¼ E

XN
i¼1

Ti
Y1i

π1i
�
XN
i¼1

Ti
f Xi; θið Þ

π1i
þ
XN
i¼1

f Xi; θið Þ
" #

¼ E
XN
i¼1

Ti
Y1i

π1i

" #
� E

XN
i¼1

Ti
f Xi; θið Þ

π1i

" #
þ E

XN
i¼1

f Xi; θið Þ
" #

¼
XN
i¼1

π1iY1i

π1i
�
XN
i¼1

π1iE
f Xi; θið Þ

π1i

� �
þ
XN
i¼1

E f Xi; θið Þ½ �

¼ YT
1 �

XN
i¼1

E f Xi; θið Þ½ � þ
XN
i¼1

E f Xi; θið Þ½ � ¼ YT
1

½39�

and, likewise,

E dYT�
0

h i
¼ YT

0 : ½40�

The third line of eq. [39] follows from Cov Ti; f Xi; θið Þð Þ ¼ 0. The key insight is that, if

E
PN
i¼1

Ti
f Xi;θið Þ

π1i

� �
¼ E

PN
i¼1

f Xi; θið Þ
� �

, the two right-most terms in eqs. [13] and [14] cancel in expectation and,

therefore, the terms do not lead to bias in the estimation of YT
1 or YT

0 .
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Appendix C: location invariance of the generalized
difference estimator

Unlike the HT estimator, the generalized difference estimator is location invariant. If the outcome measure
changes such that Y�

i ¼ b0 þ b1Yi, we assume that the predictive function will also change by the identical
transformation such that

f Xi; θið Þ� ¼ b0 þ b1f Xi; θið Þ: ½41�

If we conceptualize f ð:Þ as a function designed to predict the value of Yi, then the intuition behind this
transformation is clear; if we change the scaling of the outcome variable, it logically implies that the
numerical prediction of the outcome will change accordingly. By eqs. [16] and [41],

cΔG
� ¼dΔHT

� � 1
N

XN
i¼1

Ti
f Xi; θið Þ�

π1i
�
XN
i¼1

1� Tið Þ f Xi; θið Þ�
π0i

 !

¼dΔHT
� � 1

N

XN
i¼1

Ti
b0 þ b1f Xi; θið Þ

π1i
�
XN
i¼1

1� Tið Þ b0 þ b1f Xi; θið Þ
π0i

 !

¼dΔHT
� � 1

N

XN
i¼1

Ti
b0
π1i

�
XN
i¼1

1� Tið Þ b0
π0i

 !

� 1
N

XN
i¼1

Ti
b1f Xi; θið Þ

π1i
�
XN
i¼1

1� Tið Þ b1f Xi; θið Þ
π0i

 !

¼ b1dΔHT � 1
N

XN
i¼1

Ti
b1f Xi; θið Þ

π1i
�
XN
i¼1

1� Tið Þ b1f Xi; θið Þ
π0i

 !

¼ b1dΔHT � b1
N

XN
i¼1

Ti
f Xi; θið Þ

π1i
�
XN
i¼1

1� Tið Þ f Xi; θið Þ
π0i

 !
¼ b1cΔG:

½42�

The fourth line in eq. [42] follows from the substitution of eq. [38] for dΔHT
�.

Appendix D: abbreviated proof of conservative variance estimator

We present an abbreviated proof from Aronow and Samii [46]. Without loss of generality, we prove thatdVarCðcYT
1 Þ will be positively biased for VarðcYT

1 Þ.

VarðcYT
1 Þ ¼

XM
k¼1

π01kð1� π01kÞ
Y 0
1k

π01k

� 	2

þ
XM
k¼1

X
l�k

ðπ01k1l � π01kπ
0
1lÞ

Y 0
1k

π01k

Y 0
1l

π01l
;

By Young’s inequality,

VarðcYT
1 Þ � VarCðcYT

1 Þ ¼
XM
k¼1

π01kð1� π01kÞ
Y 0
1k

π01k

� 	2

þ
XM
k¼1

X
l�k:π01k1l>0

ðπ01k1l � π01kπ
0
1lÞ

Y 0
1k

π01k

Y 0
1l

π01l

þ
XM
k¼1

X
"l:π01k1l¼0

ðY 0
1kÞ2
2

þ ðY 0
1lÞ2
2

 !
:
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VarCðcYT
1 Þ may be estimated without bias:

dVarCðcYT
1 Þ ¼

XM
k¼1

T 0
kð1� π01kÞ

Y 0
k

π01k

� 	2

þ
XM
k¼1

X
l�k:π01k1l>0

T 0
kT

0
l

π01k1l
ðπ01k1l � π01kπ

0
1lÞ

Y 0
k

π01k

Y 0
l

π01l

þ
XM
k¼1

X
"l:π01k1l¼0

Tk
ðY 0

kÞ2
2π01k

þ Tl
ðY 0

l Þ2
2π01l

 !
;

by E T 0
kT

0
l

� � ¼ π01k1l, E T 0
k

� � ¼ π01k and eq. [1]. Since E dVarCðcYT
1 Þ

h i
¼ VarCðcYT

1 Þ, E dVarCðcYT
1 Þ

h i
� VarðcYT

1 Þ. By

inspection, dVarCðcYT
0 Þ is also conservative.

Examining this estimator reveals why we have totaled clusters prior to estimation of variances. By
combining totals, we apply Young’s inequality to all pairs of cluster totals, instead of all cluster-
crosswise pairs of individual units. The bounds need only apply to a single totaled quantity, rather
than to each of the constituent components. This step therefore will typically reduce the bias of the
estimator.

Appendix E: proof of conservative covariance estimator

Cov cYT
1 ;
cYT
0

� �
¼
XM
k¼1

X
l�k

ðπ01k0l � π01kπ
0
0lÞ

Y 0
1kY

0
0l

π01kπ
0
0l

�
XM
k¼1

Y 0
1kY

0
0k:

By Young’s inequality,

Cov cYT
1 ;
cYT
0

� �
� CovC cYT

1 ;
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0

� �
¼
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k¼1

X
l�k

ðπ01k0l � π01kπ
0
0lÞ

Y 0
1kY

0
0l

π01kπ
0
0l

�
XM
k¼1

ðY 0
1kÞ2
2

�
XM
k¼1

ðY 0
0kÞ2
2

:

½43�

CovC cYT
1 ;
cYT
0

� �
may be estimated without bias:

dVarCðcYT
1 Þ ¼

XM
k¼1

T 0
kð1� π01kÞ

Y 0
k

π01k

� 	2

þ
XM
k¼1

X
l�k:π01k1l>0

T 0
kT

0
l

π01k1l
ðπ01k1l � π01kπ

0
1lÞ

Y 0
k

π01k

Y 0
l

π01l

�
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k¼1

T 0
k
ðY 0

kÞ2
2π01k

�
XM
k¼1

ð1� T 0
kÞ
ðY 0

kÞ2
2π00k

;

by E T 0
kð1� T 0

l Þ
� � ¼ π01k0l, E T 0

k

� � ¼ π01k, E 1� T 0
k

� � ¼ π00k and eq. [1]. Since E dCovC cYT
1 ;
cYT
0

� �h i
¼ CovC cYT

1 ;
cYT
0

� �
,

E dCovC cYT
1 ;
cYT
0

� �h i
� Cov cYT

1 ;
cYT
0

� �
. Unbiasedness under the sharp null hypothesis of no effect is ensured by

eq. [43], where if Y 0
0k ¼ Y 0

1k, CovC
cYT
1 ;
cYT
0

� �
¼ Cov cYT

1 ;
cYT
0

� �
. Much as in Appendix D, the bias of the estimator

is reduced by totaling clusters prior to estimation. In fact, unbiasedness under the sharp null hypothesis of
no effect only holds because we have totaled clusters. Otherwise, the bounds would have to operate over all
units, and pairs of units, within each cluster.
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